Biophysics of Computation Information Processing in Single Neurons

"softddl.org"
17-12-2020, 03:07
Rating:
0
0 vote


  • Biophysics of Computation Information Processing in Single Neurons
    Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience) by Christof Koch
    English | October 28, 2004 | ISBN: 0195181999 | PDF | 588 pages | 36.3 MB
    Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.



Biophysics of Computation Information Processing in Single Neurons
Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience) by Christof Koch
English | October 28, 2004 | ISBN: 0195181999 | PDF | 588 pages | 36.3 MB
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.


Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.
Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me


Links are Interchangeable - No Password - Single Extraction
 
Comments
The minimum comment length is 50 characters. comments are moderated
There are no comments yet. You can be the first!
Download free » Download eBooks free » Biophysics of Computation Information Processing in Single Neurons
Copyright holders