Brad Klingensmith - Image Super-Resolution GANs
"softddl.org"
31-01-2022, 05:50
-
Share on social networks:
-
Download for free: Brad
-
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 24 lectures (2h 31m) | Size: 2.6 GB
Enhance/upsample images with Generative Adversarial Networks using Python and Tensorflow 2.0
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 24 lectures (2h 31m) | Size: 2.6 GB
Enhance/upsample images with Generative Adversarial Networks using Python and Tensorflow 2.0
What you'll learn
Create a generator architecture that upsamples an image by 4 times in each dimension
Create a discriminator architecture that scores both realism and fidelity to the original image
Modify custom written Keras layers to accept input images of any size without rebuilding the model
Train the models on a Cloud TPU through Google CoLab
Use the trained generator in a practical application to upsample your own images
Requirements
My "High Resolution Generative Adversarial Networks (GANs)" course
Python experience
Convolutional neural network experience
Basic familiarity with TensorFlow 2.0 and Keras
Description
We've all seen the gimmick in crime TV shows where the investigators manage to take a tiny patch of an image and magnify it with unrealistic clarity. Well today, Generative Adversarial Networks are making the impossible possible.
Dive into this course where I'll show you how easily we can take the fundamentals from my High Resolution Generative Adversarial Networks course and build on this to accomplish this impressive feat known as Super-resolution. Not only will you be able to train a Generator to magnify an image to 4 times it's original size (that's 16 times the number of pixel!), but it will take relatively little effort on our end.
Just as in the first course, we'll use Python and TensorFlow 2.0 along with Keras to build and train our convolutional neural networks. And since training our networks will require a ton of computational power, we'll once again use Google CoLab to connect to a free Cloud TPU. This will allow us to complete the training in just a few days without spending anything on hardware!
If this sounds enticing, take a few minutes to watch the free preview of the "Results!" lesson. I have no doubt that you will come away impressed.
Who this course is for
Python + TensorFlow 2.0 developers who want to enlarge images with photorealistic detail and clarity
Homepage
https://www.udemy.com/course/image-super-resolution-gans/
Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
https://uploadgig.com/file/download/0176Ed238b31a970/44iio.I.S.G.part1.rar
https://uploadgig.com/file/download/b0019A12454f1aaA/44iio.I.S.G.part2.rar
https://rapidgator.net/file/ffcc70709be6700bd2529c238ecbaa2c/44iio.I.S.G.part1.rar.html
https://rapidgator.net/file/4636de76e57ec04c51e52d570d0f9d20/44iio.I.S.G.part2.rar.html
http://nitro.download/view/A48FC2619255B6F/44iio.I.S.G.part1.rar
http://nitro.download/view/896DCF6EA5DE1A4/44iio.I.S.G.part2.rar
Links are Interchangeable - No Password - Single Extraction
The minimum comment length is 50 characters. comments are moderated